	Focus	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Topic -Pure	Vectors 1: Equations of planes Further algebra and graphs Matrices 1: 3x3 determinants and inverses Matrices 2: Matrices and simultaneous equations Matrices 3: Factorisation of determinants Conics: Conics and further transformations	Further calculus 1: Improper integrals Further calculus 2: Inverse trigonometric functions Further calculus 3: Further integration Polar coordinates: Finding areas Series and Limits 1: Maclaurin series Series and Limits 2: Series and induction	Further Matrices: Eigenvalues and Eigenvectors Hyperbolic Functions Further Integration Numerical Methods Complex Numbers 1: Exponential form Complex numbers 2: De Moivre's Theorem Complex Numbers 3: Complex Roots	Further vectors 1: The vector product Further vectors 2: Lines and planes First order differential equations Second order differential equations 1: Homogeneous Second order differential equations 2: Non-homogeneous Second order differential equations 3: Modelling with 2nd order differential equations	Exam preparation	
Maths	Topic - Applied	Graphs and Networks 4- Isomorphism, Kuratowski's Theorem Further Network Flows Further Critical Path Analysis	Further Linear programming- Simplex Method Further Game Theory Further Binary operations- Group Theory Momentum and Power (including resolving)	Further Circular Motion- vertical motion and using vectors Centre of Mass and Moments	Work on Pure content	Exam Preparation	
level Further	Key concepts/ideas	 Pure: Using vector equation of planes Working with matrices Working with graphs Applied: Proofs with Planar Graphs Extending network flows and CPA 	Pure: Extending calculus Working with Polar coordinates Series Applied: Using the simplex algorithm, group theory and extending AS mechanics to resolving	 Pure: Further work on Matrices and complex numbers and integration Hyperbolic functions Using numerical methods for integration and differential equations Applied: Complete mechanics with further vertical circular motion and then moments and centres of mass 	Pure: Vector Geometry- lines and planes (equations, angles, intersections) Differential Equations- solving first and second order and then applications of these	Revising and practicing exam style questions	
Year 13 A	Key skills- Pure	 Understand and use the vector and Cartesian forms of the equation of a plane. Use the scalar product to express the equation of a plane and to calculate the angle between two planes and the intersection of two planes Find the intersection of a line and a plane. Modulus and reciprocal graphs Equations and inequalities Graphs with oblique asymptotes Calculate determinants of 3×3 matrices (without a calculator) Calculate and use the inverse of non- singular 3x3 matrices. (without a calculator) Solve three linear simultaneous equations in three variables by use of the inverse matrix. Interpret geometrically the solution and failure of solution of three simultaneous linear equations. 	 Evaluate improper integrals where either the integrand is undefined at a value in the range of integration or the range of integration extends to infinity. Differentiate inverse trigonometric functions. Integrate using partial fractions. Be able to choose trigonometric substitutions to integrate associated functions. Find the area enclosed by a polar curve. Find tangents parallel to, or at right angles to, the initial line. Polynomial approximations and Maclaurin series 	 Find eigenvalues and eigenvectors of 2 × 2 and 3 × 3 matrices. Find and use the characteristic equation. Understand the geometrical significance of eigenvalues and eigenvectors. Diagonalisation of matrices Hyperbolic functions Identities Reciprocal and further inverse hyperbolic functions Calculus and hyperbolic functions General Integration Reduction Formulae Curved lengths and surface areas Mid-ordinate rule and Simpson's rule for integration. 	 Calculate and understand the properties of the vector product. Understand and use the equation of a straight line in the vector product form Use vector products to find the area of a triangle. Find the intersection of a line and a plane and the angle between a line and a plane Perpendicular distance from a point to the plane. Calculate the angle between a line and a plane. Use separation of variables to solve first order Des. Find and use an integrating factor to solve differential equations. 	Practise a variety of exam style questions	

Key skills- Applied	 row and column operations on 3x3 matrices 12) Single transformations of curves involving translations, stretches parallel to coordinate axes and reflections in the coordinate axes and the lines y = ± x . 13) Extend to composite transformations including rotations and enlargements 1) Definitions and problem solving for planar graphs 2) Flow augmenting algorithm, restricted nodes, edges with upper and lower capacities 	 standard functions 9) Evaluating limits 10) L'Hopitals rule 11) Applying the method of differences with partial fractions 1) Apply the simplex to solve linear programming problems 2) Convert and solve 	 solving first order differential equations. 14) Improved Euler method for solving first order differential equations. 15) Summing series using de Moivre's Theorem and use it to find multiple angle formulae. 6) Use complex roots of unity to solve geometric problems. 1) Conical Pendulum 2) Vertical Circular motion 3) Use of vectors in circular motion 	of the form y " + ay' + by = 0 where a and b are constants, by using the auxiliary equation. 10) Solve differential equations of the form y " + ay' + by = f(x) where a and b are constants by solving the homogeneous case and adding a particular integral to the complementary function. 11) Use differential equations in modelling in kinematics and in other contexts 12) Apply differential equations to SHM, damped harmonic motion and coupled equations		
	 3) Gantt (cascade) diagrams, resource histograms, resource levelling 	 2) Convert and solve higher order games to linear programming problems 3) Group axioms 4) Lagrange's theorem 5) Identify and use the generators of a group 6) Recognise and find isomorphism 7) Momentum in 2D with resolving 8) Power on slopes 	 4) Centres of mass of systems of particles 5) Centres of mass of laminas 6) Centres of mass using integration 7) Sliding and Toppling 			
Key terms/vocab	Scalar product Isomorphic Kuratowski's Theorem Planar Graphs Cascade diagrams					
Independent learning / wider reading	Books: Maths in minutes: 200 Key concepts explained in an instant by Paul Glendinning Professor Povey's Perplexing Problems by Thomas Povey Entertaining Mathematical Puzzles by Martin Gardner	Youtube videos: The mathematics of Love by Hannah Fry <u>https://www.youtube.com/watch</u> <u>?v=yFVXsjVdvmY</u> Why I fell in love with monster prime numbers by Adam Spencer <u>https://www.youtube.com/watch</u> <u>?v=B4xOFsygwr4</u> Trig and Logarithms- Marcus du Sautoy	Websites: Interactive Mathematics Miscellany and Puzzles <u>http://www.cut-the-knot.org/</u> Radio 4 Maths collection: <u>https://www.bbc.co.uk/radio4/featur</u> <u>es/collections/mathematics/</u> Radio 4 Maths and Magic <u>https://www.bbc.co.uk/programmes/</u> <u>b03ls7y2/clips</u>		Old exam papers are also useful	

		https://www.youtube.com/watch ?v=qEdUZg13Jlg&list=PLZt9bXMy 6CcBIHHbdcwvuJmh9-sFzLB97				
Assessment- Pure	Graphs with Oblique asymptotes, Factorising determinants Solving 3 equations in 3 unknowns 3x3 inverse matrices Equations of planes and angles between them Conic Transformations	Improper Integrals Polar curves and areas of regions Integration of Inverse trig function Harder Integration Maclaurins series and Limits	Mock examinations on all topics completed so far in both year 12 and 13 ns	Full Maclaurins Limits 2 important Hyperbolics inc calculus Hyperbolic identities Eigenvalues and Eigenvectors Diagonalisation of matrices	External exams	
Assessment- Applied	binary operations (AS) impulse and momentum(AS) Collisions(AS)	Isomorphic graphs Kuratowskis Group Theory Simplex algorithm		centres of mass vertical circular motion network flows critical path analysis		
Careers links	Electrical Engineering, Mechanical Engineering, Transport Industry, Operational Research, Computer Animation, Computer Programming, Meteorology, Construction, Event Planning, Project Management, Business, Economics, Biology, Political Science, Materials Science, Civil Engineering, Architecture, Aeronautical Engineering	As Aut 1	As Aut 1	As Aut 1	As Aut 1	As Aut 1