Further Maths

Basic information

- You cannot take Further Maths or Further Maths AS without taking the Maths A-level.
- You have to REALLY love maths half your timetable will be maths!
- Full A-level- 3 papers, 2 on pure maths, third split in half on Decision maths (algorithms and decisions) and Mechanics (motion and forces)
- AS-level 2 papers, 1 on pure maths, second split in half on Decision and Mechanics.

Topics covered

- Matrices
- Complex (imaginary) numbers
- Sequences and series
- Proof
- Vectors
- Roots of polynomials
- Polar coordinates

Complex numbers Friday, 19 June 2020

- The imaginary number, *i*, is defined as $i = \sqrt{-1}$
- Therefore we can write the solution to $x^2 = -9$ as $x = \pm \sqrt{-9}$
- This then gives us $x = \pm \sqrt{9}\sqrt{-1}$
- So the solutions are $x = \pm 3i$

Complex numbers Friday, 19 June 2020

- Solve the equation $(x 3)^2 = -5$
- $x 3 = \pm \sqrt{5}i$
- $x = 3 \pm \sqrt{5}i$
- These sorts of numbers which contain a real term and an imaginary term are called complex numbers.
- Complex numbers can be written in the form a + bi, where a, b $\in \mathbb{R}$. (a and b are real numbers)
- The set of complex numbers is denoted $\mathbb{C}.$

Complex numbers Friday, 19 June 2020

- Simplify 3(4 7i) 2(3 2i)
- 12 21i 6 + 4i =
- 6 17i

<u>Complex numbers</u> <u>Friday, 19 June 2020</u>

• i² = -1

<u>Complex numbers</u> <u>Friday, 19 June 2020</u>

- How do you rationalise the denominator in the following:
- $\bullet \ \frac{8+\sqrt{3}}{1-\sqrt{2}}$

• So how do we rationalise the denominator here?

•
$$\frac{1+3i}{1-2i}$$

• $\frac{1+3i}{1-2i} \times \frac{1+2i}{1+2i}$
• $\frac{1+2i+3i+6i^2}{1+2i-2i-4i^2} = \frac{1+5i-6}{1+4} = \frac{-5+5i}{5} = -1+i$

Complex numbers

Solve these equations.

a $x^2 = -25$ **b** $x^2 = -121$ **c** $x^2 = -20$ **d** $x^2 + 8 = 0$

Fully simplify each of these expressions.						
а	i^3	b	i^4	C	<i>i</i> ⁵	
d	$(2i)^{3}$	е	$(3i)^4$	f	$2i^2(5i-9)^2$	

Simplify these fractions, giving your answers in the form a + bi where $a, b \in \mathbb{R}$

a
$$\frac{3}{2+i}$$
 b $\frac{2i}{1-5i}$ **c** $\frac{1+7i}{3-i}$

Friday, 19 June 2020

Have a go at these Answers on the next slide

<u>C</u>	omplex numbers	<u>F</u>	Friday, 19 June 2020
a	$x = \pm 5i$	b	$x = \pm 11i$
С	$x = \pm 2\sqrt{5}i$	d	$x = \pm 2\sqrt{2}i$
a	-i	b	1
с	i	d	-8 <i>i</i>
e	81	f	-112 + 180i
a	$\frac{6}{5} - \frac{3}{5}i$	b	$-\frac{5}{13}+\frac{1}{13}i$
с	$-\frac{2}{5}+\frac{11}{5}i$	d	$-\frac{1}{5}-\frac{7}{5}i$
e	$(1-2\sqrt{2})+(-2-\sqrt{2})i$	f	$-\sqrt{2}$