Please write clearly in	ı block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE COMBINED SCIENCE: TRILOGY

Foundation Tier

Chemistry Paper 1F

Specimen 2018 (set 2)

Time allowed: 1 hour 15 minutes

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use						
Question	Mark					
1						
2						
3						
4						
5						
6						
7						
TOTAL						

0 1.2	Each atom in graphene has one delocalis	ed electron.	
	Complete the sentence.		
	Choose the answer from the box.		[1 mark]
	act as a lubricant	be used as a fuel	
	Delocalised electrons allow graphene to		
	Question 1 continues on	the next name	
	Question i continues on	the next page	

Turn over 🕨

An electric current is passed through silver nitrate solution. Figure 3 shows the apparatus. Figure 3 + dc power supply Filament bulb lights up Positive electrode Negative electrode (anode)-0 0 ° ° ° (cathode) ° 0/° ° Silver nitrate solution The solution contains four ions: Ag⁺ H^{+} NO₃ OH⁻ 0 2 . 3 Where do the H^+ and OH^- ions come from? [1 mark] Tick one box. Air Electrodes Silver nitrate Water

02.4	Ag^{+} ions and H^{+} ions are attracted to the negative electrode (cathode).	
	Give a reason why.	14 montel
		[1 mark]
02.5	Silver is produced at the negative electrode (cathode) and not hydrogen.	
	What does this tell you about the reactivity of silver?	[1 mark]
	Tick one box.	[i mark]
	Silver is less reactive than hydrogen	
	Silver is less reactive than oxygen	
	Silver is more reactive than nitrate	
	Silver is more reactive than water.	
02.6	The hydroxide ion (OH ⁻) is attracted to the positive electrode (anode).	
	The equation shows what happens at the positive electrode (anode).	
	$4 \text{OH}^- \rightarrow 2 \text{H}_2 \text{O} + \text{O}_2 + 4 \text{e}^-$	
	Name the gas produced at the positive electrode (apade)	
	Name the gas produced at the positive electrode (anode).	[1 mark]
	Question 2 continues on the next page	

]
0 3.5	Potassium fluoride is an ionic compound.	
	Explain why ionic compounds have high melting points.	
	Use the following words in your answer:	
	attraction	
	• energy	
	 ions. [4] 	marks]
	•	-
	Turn over for the next question	

0 4.3	The percentage by mass of oxygen in carbon dioxide (CO ₂) is calculated by the equation:
	percentage by mass = $\frac{\text{number of atoms of O \times Relative atomic mass of oxygen (O)}}{\text{relative molecular mass of carbon dioxide (CO2)}} \times 100$
	Relative atomic masses (A_r): C = 12 O = 16
	Calculate the percentage by mass of oxygen in carbon dioxide (CO ₂). [3 marks]
	Percentage by mass of oxygen = %

	Hydrogen peroxide decomposes to produce water and oxygen.	
04.4	Balance the chemical equation. [1 mar	k]
	$\underline{\qquad} H_2O_2 \rightarrow \underline{\qquad} H_2O + O_2$	
0 4 . 5	6.8 g of hydrogen peroxide decomposes to produce 3.6 g of water.Calculate the mass of oxygen produced when 68 g of hydrogen peroxide decomposes.	
	[2 mark	s]
		_
	Mass of oxygen =	g
	Turn over for the next question	

0 5	This ques	stion is	abou	t atom	ns and	chem	ical ele	ement	S.					
	Mendeleev's periodic table has groups of elements with similar properties.													
	Figure 8 shows part of Mendeleev's periodic table.													
	Figure 8													
		1	1 H											
		2	7 Li	9.4 Be	11 B	12 C	14 N	16 O	19 F					
		3	23 Na	24 Mg	27.3 Al	28 Si	31 P	32 S	35.5 Cl					
		4	39 K	40 Ca	44	48 Ti	51 V	52 Cr	55 Mn	56 Fe,	59 Co,	59 Ni,	63 Cu	
														-
0 5 . 1	Compare	e Menc	leleev	's peri	odic ta	ıble wi	th the	mode	rn peri	odic 1	able			
	Tick one	box	missi	ng iroi	n wen	delee	vs per		able?					[1 mark]
		DOX.	Г											
	Group 1													
	Group 2													
	Group 7													
	Group 0													

0 5.2	In the early periodic tables se	ome elements were placed in the wrong groups.
	Mendeleev overcame some	of these problems in his periodic table.
	Give two ways Mendeleev d	id this.
		[2 marks]
	1	
	2	
	Atoms were thought to be tir	ly spheres that could not be divided.
	C C	
0 5.3	Draw one line from each scie	entist to the discovery the scientist made.
		[2 marks]
	Scientist	Discovery the scientist made
		Discovered electrons
	Neils Bohr	Electrons orbit the nucleus
		Existence of neutrons
	James Chadwick	Mass of atom concentrated at
		centre
		Proton found in nucleus
	Question 5 c	continues on the next page

Turn over **>**

This is the method used.

- 1. Put 25 cm³ of dilute sulfuric acid into a polystyrene cup.
- 2. Measure the initial temperature of the dilute sulfuric acid.
- 3. Add 4 cm³ of sodium hydroxide solution to the dilute sulfuric acid.
- 4. Stir the mixture.
- 5. Measure the highest temperature of the mixture.
- 6. Repeat steps 3–5 until 40 cm³ of sodium hydroxide solution have been added.

Figure 10 shows the apparatus the student used.

Figure 10

Question 6 continues on the next page

Do not write

06.3	Determine the volume of sodium hydroxide solution that gives the highest temperature change.
	Use Figure 12 to help you answer this question. [1 mark]
	Volume = cm ³
06.4	In Figure 12 the temperature when 16 cm ³ of sodium hydroxide solution is added is anomalous.
	Suggest one error that could have been made in the method which would cause this anomalous result. [1 mark]
06.5	The sodium hydroxide solution in this investigation contains 80 grams per dm ³
	The students use 40 cm ³ of sodium hydroxide solution.
	Calculate the mass of sodium hydroxide in 40 cm ³ [3 marks]
	g
	Turn over for the next question

Turn over ►

0 7.2	Magnesium reacts with hydrochloric acid to produce magnesium chloride and hydrogen.	
	Plan an investigation to find the accurate volume of hydrogen produced from magnesium.	
	You do not need to write about safety precautions.	[6 marks]
	Question 7 continues on the next page	

0 7.4	Determine the mass of copper that can be produced from 75 g of copper oxide.	
	Use Figure 14. [3 marks]	
		-
		-
		-
		-
		-
	Mass =g	
		-
	END OF QUESTIONS	

Copyright $\ensuremath{\textcircled{O}}$ 2017 AQA and its licensors. All rights reserved.